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To estimate the intensification of the surface heat- and mass-transfer process in 
tubular heat-exchange apparatus, a mathematical model is proposed for the analy- 
sis of the frequency and scalar characteristics of the force action of the flow 
of a single-phase heat carrier in the tube grid. 

The hydrodynamic vib=ation of heat-exchanger tubes can become the reason for the prema- 
ture failure of heat-exchanger apparatus, and can contract the range of allowable modes of 
operation of the installation. To prevent these vibrations it is necessary to be able to 
determine the magnitude and frequency spectrum of the hydrodynamic forces acting on the tubes 
for different excitation mechanisms. 

In a number of cases a sufficiently efficient model for the analysis of the collapsing 
flow around bodies at high Reynolds numbers turns out to be the model of a perfect medium with 
the approximation of a nonstationary vortex layer on the body and a system of discrete point 
vortices behind it [i]. For poorly streamlined bodies that have no sharp edges (a cylinder, 
for example), the flow separation points on the body surface are not known and depend on the 
number Re in a viscous fluid. This requires development of supplements to theavaileble mod- 
els. The problem of the separation flow around a single cylinder has been investigated most 
and it is examined in [2-4] on an ideal fluid model. 

Problems of viscous fluid flow around obstacles are also studied by using finite-differ- 
ence schemes [5, 6]. However, these methods are suitable for small Reynolds numbers and re- 
quire a significantly high machine time expenditure. 

The model proposed in [3] to analyze the collapsing flow around a ~ube takes into account 
the influence of the Reynolds number by selecting the position of the boundary-layer separa- 
tion point from the tube surface. The model is also applied to solve the following problems: 
separation flow around a tube fluctuating both along and across the stream, tubes in a self- 
oscillation mode. The computed quantitative characteristics obtained in all cases (the values 
of the time-varying coefficients of frontal drag and lift, the width of the pulling zone, the 
amplitude-frequency curves) are in agreement with the numerous experimental data in the 2.10 a- 
5"10 ~ Reynolds number range. 

An approach based on a combination of the model for an ideal medium and boundary-layer 
theory is used in [4] to compute the separation flow around a cylinder. Empirical data which 
are ordinarily used in standard boundary-layer models are relied upon here. 

Below, the problem of the separation flow around a number of tubes that has certain dif- 
ferences in principle as compared with the problem of a single tube is considered by using 
the model in [3]. The results of a computation can have numerous practical applications (see 
[7], say). 

Let an infinite series of fixed tubes be flowed around with separation by a plane fluid 
flow moving normally to the front of the grid. At certain points in a viscous fluid, the 
boundary layer separates from the cylinder surface and forms turbulent vortex layers that ro- 
tate in large scale Karman street eddies. 

Let us examine the schematization of this phenomenon by a model for the plane flow of 
an ideal incompressible fluid. We assume that the vortex sheet sheds at points of separation 
A and consists of fluid particles incident from the boundary layer onto the frontal part of 
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the cylinder (Fig. i). A counter motion exists on the root part of the cylinder, and conse- 
quently, in the model we assume that vorticity of the opposite sign mixes with the main vor- 
tex sheet (presumably in the triangle ABC). Thiw model for a single tube is given a founda- 
tion in more detail in [3]. 

We now note certain fundamental features that distinguish this problem from the problem 
of separation flow around a single tube. 

The flow field is periodic although the period is certainly not the grid spacing t since 
vortex separation on adjacent tubes can occur with a phase shift. In the case of fixed tubes 
the phase shifts 8 = 0, 8 = ~ are of greatest practical interest. The second essential singu- 
larity is that the free vortices being separated form an infinite chain whose axes are paral- 
lel to the grid front. No matter how far this chain is removed from its site of origination, 
the velocities it induces in the whole flow plane do not tend to zero. This problem is more 
complex than the problem of the flow around a single tube since the application of the mirror 
image method would result in an infinite reflection process. Direct application of the meth- 
od of attached vortices located on the contour (Zhukovskii vortices) is difficult because of 
the nearby location of the trailing sheet to the cylinder surface. Consequently, a certain 
combined method will be proposed below. 

The location of separation points on a system of tubes around which a viscous fluid flows 
depends on the numbers Re exactly as for a single tube. However, the singularity of this case 
is that separation occurs for e = 90 ~ for the compact grids that are used in engineering. This 
is explained by the fact that a large negative pressure gradient is observed on the frontal 
part of the tube while a large positive pressure gradient that the boundary layer cannot over- 
come would occur at the root part in the absence of separation. Consequently, the coordinates 
of the separation points are taken equal to a = • ~ for the subsequent computations, although.- 
computations can be executed by the same method even for another position of the points of 
separation as has been done for a single tube. It is meaningful to do this for sparse grids. 

Computations are performed below for the phase shift 8 = 0. The other case of practical 
interest ~ = ~ can be computed by the same method; however, this will result in substantial 
growth of the volume of calculations. 

Let us consider one chain of free vortices located behind a cylinder (Fig. i). The ve- 
locity caused by such a vortex chain in the flow plane is 

u - -  i v  AF~ c t h  ~ (z -- zi) , z i  = x~ + i g i ,  ( 1 )  
2it t 

where z i is the coordinate of a vortex in the i-th chain, and AT i is the intensity of this vor- 
tex. 

As t -> ~ this dependence evidently expresses the velocity induced by a single vortex. If 
we let x i tend to infinity in (i), we then obtain 

Aft 
u = 0; v - -  ( 2 )  

2 t  

Therefore, even if the free vortex chain were removed to infinity by the stream, it would still 
induce a finite vertical velocity. It should be noted that the mentioned limit values of the 
velocities (2) are achieved in practice as the vortex chain is removed the distance of one 
step from the cylinders. Since vortex chains having reverse circulations and approximately 
identical absolute magnitudes shed periodically from the cylinder during separation flow, then 
the far wake has practically no influence on the flow mode. 

The boundary conditions assume the normal velocities on the tube surface equal zero. Be- 
cause of the periodicity of the flow pattern, it is sufficient to satisfy the boundary condi- 
tions on one circumference. This can be achieved by different methods. In this case the most 
effective method seems to be the following combination. As in the case of a single tube, we 
place a dipole imaging the tube at the center of each circumference. Then the velocity caused 
by the main stream and the system of dipoles is determined by the formula 

u- iv = u~-- A (3) 

sh  ~ ~ z  
t 
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As the step tends to infinity (3) will become the exact solution of the problem of the flow 
around a single tube. For a finite value of the step the expression obtained will be a good 
approximation. 

Since the solution (3) is not exact, the stream function does not take on a constant val- 
ue on the circumference. We determine the constant A by satisfying the boundary conditions 
at the points 1 and 2 (Fig. 1). Then the solution (3) will be exact for a grid of ovals close 
to circles. In particular, for t = 4 and r = 4 the ratio ~of the semiaxes of the ovals will 
be 1.017. 

In order to satisfy the boundary conditions on the tubes approximately in the presence 
of a free vortex chain, we take the mirror image of "its" free vortex in each circle (Fig. 
i). The velocity caused by the free vortex chain and by the vortex chain obtained by the men- 
tioned mirror imaging can be written by using (I) 

u - -  i v  = AF~ cth ~ (z - -  zi) APi  c th  ~ (z - -  zji) 
2 i t  t 2 i t  t (4) 

Such a solution will again tend to the exact solution as t ~ ~ and is a good approximation 
for a finite value of the step if the free vortex chain is near the tube. In order to satis- 
fy the boundary conditions more exactly, we apply the method of attached vortices. We arrange 
N free vortices on the tube and select their circulation in such a manner that the boundary 
conditions on the tube would be satisfied at the N given points. The intensities of the vor- 
tices located on the tube are obtained relatively small, as computations confirmed, since i~:: 
these vortices just correct a good first approximation. 

Therefore, the stream flowing around the tube grid is comprised of the streams: a) plane- 
parallel, moving with the velocity u~; b) caused by the dipole chain placed at the center of 
the tubes; c) caused by the system of free vortices located behind each tube; d) from "ficti- 
tious" vortices; e) caused by the attached Zhukovskii vortices located on the circle. 

According to the Thomson theorem, the total circulation around a contour enclosing any 
of the tubes and its referred free vortices should equal zero. This could be achieved by 
placing a vortex with intensity equal to and opposite in sign to the sum of the vortex intensi- 
ties on the tube within each tube. Instead of this, the boundary conditions on the tube could 
be satisfied at N -- i points, and the N-th condition could be to select the condition that the 
sum of the vortex circulations on the tube equals zero. 

The most detailed experimental investigations of the regularities of vortex separation in 
tube bundles were conducted~in [8]. Experimental data are presented in [8] for values of the 
dimensionless frequency of vortex separation Sh = fd/u in the bundle as a function of the rel- 
ative step and the tube location in the beam. According to these data, the Strouhal number 
computed according to the mean fluid velocity between the tubes can be both greater and less 
than for the flow around a single tube. The experimental dependences Sh = ~(t/r) are present- 
ed in Fig. 2 for corridor bundles with I/r ffi 6 to ~ (points i, curve i) and for different t/r, 
and the same data for checkerboard bundles (points 2, curve 2). 

The separation flow around one series of tubeswas computed by the method described for 
the relative grid densities t/r = 3, 4, 5, 6, 10, i00. The corresponding points (points 3) 
are superposed in Fig. 2. The agreement between the computed data and curve 1 is explained 
by the fact that the second series in this experiment stood off by relative distance I/r = 
6 to ~ from the first and, therefore, its influence was practically nonexistent. 

Shown in Fig. 3 is the change in intensity of the vortex sheet being shed at the separ- 
ation points A (see Fig. i) as a function of the dimensionless time T = Yu~/r. Curve I cor- 
responds to the relative grid compactness of t/r = i00, and curve 2 to the compactness t/r = 
4. For t/r = 100 the results of computing the flow around the tube grid agree with analogous 
results for a single tube, which is a check on the computation. It is seen from Fig. 3 that 
as the relative distance between the tubes grows, the amplitude of the variable component of 
the vortex sheet intensity also grows, while the magnitude of the constant component drops 
(see the lower part of Fig. 3). It hence follows that as the grid compactness increases the 
magnitude of the exciting force caused by vortex separation diminishes. This factis also 
confirmed experimentally [8]. However, it is necessary to note that another excitation mech- 
anism associated with the mutual tube displacement also appears in compact grids. 
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Fig. 2. Dependence of the dimensionless frequency of vortex separation on the rel- 
ative compactness of the tube grid: i) experiment for a corridor tube bundle with 
a lengitudinal spacing I/r = 6-~ according to data in [8]; 2) experiment [8] for 
checkerboard tube bundles; 3) computation for a tube grid. 

Fig. 3. Change in intensity of the trailing vortex sheet on the dimensionless time. 

NOTATION 

Re = u~d/~, Reynolds number; u~, free stream velocity; d, tube diameter; v, fluid kine- 
matic viscosity; t, tube grid step; 8, phase shift during vortex dollapse from tube to tube; 
a, angle of vortex layer separation from a tube; u and v, stream velocities in the x and y ax- 
es directions~ respectively; AFt, intensity of the i-th vortex in the stream; N, number of 
vortices on a tube;__Sh = fd/u, dimensionless frequency of vortex separation; f, frequency of 
vortex separation; T = Tu /r, dimensionless time; and Z, distance between tubes of the bundle 
in the stream direction. 
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CHOICE OF PARAMETERS OF HIGH-TEMPERATURE JET RECOVERY UNITS 
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The results of mathematical modeling of the process of Jet heat transfer are pre- 
sented. Nomograms are constructed for the technlcal-economic analysis of the de- 
sign. 

The sharp intensification of heat transfer accompanying the flow of a Jet of liquid (or 
gas) onto an interface is being increasingly used in the design of diverse heat-englneering 
systems and units. A number of designs of jet recovery units [1] have been proposed in recent 
years. Among these units the modular jet recovery units designed at the Gas Institute of the 
Ukrainian SSR Academy of Sciences are most widely used [2]. 

The most important feature of systems with jet blowing is that their basic parameters 
vary over a wide range. This makes it impossible to compare existing experimental data on 
convective heat transfer at jet impact [3-5] and limits their applications in the design of 
Jet systems. 

In this work results were obtained based on the numerical solution of the system of dif- 
ferential equations of conservation of momentum, mass, and energy, closed with the help of 
the two-parameter k-- E model of turbulence. 

The working scheme of the model is shown in Fig. i. We are studying a separate opening 
(nozzle) with a diameter of dop in a perforated plate and a cylindrical region of radius R 
surrounding it into which an alr jet with an effective cross section do and velocity Uo (the 
rate of flow of air through the nozzle is given by poUo~d~/4) flows. Since in this case for 
a correctly designed jet system the effect of the drifting flow on the hydrodynamics and heat 
transfer should be small, it is ignored in the formulation of the problem. The heat-transfer 
surface, which the jet strikes, is defined in terms of the equivalent radius R from the con- 
dition zR 2 = F/N (F is the total area of the heat-transfer surface and N is the total number 
of openings in the perforated plate). The boundary conditions for the temperature were set 
so as to take into account the effect of the recirculating air on the character of the heat 
transfer. The temperature of the recirculating flux at the inlet into the working region 
(top part of the boundary 2 in Fig. i) was assumed to equal the mean temperature Ttb of the 
heated air leaving the volume (bottom part of boundary 2). This value of the temperature was 
also used for the surface of the perforated plate, and a constant temperature Tp was given on 
the heat-transfer surface 4. On the remaining boundaries (axis of symmetry and the bottom 
part of the boundary 2 through which the air leaves the working region) the condition %T/~r = 
0 was imposed. 
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